Benchmarking with Postgres PT1

Image By Daniel Lundin

In this example, we use Postgres and the pgbench workload generator to drive some load in a virtual machine.  Assume a Linux virtual machine that has Postgres installed. Specifically using a Bitnami virtual appliance.

  • Once the VM has been started, connect to the console
  • Allow access to postgres port 5432 – which is the postgres DB port or allow ssh
  • Note the postgres user password (cat ./bitnami_credentials)
  •  Login to psql from the console or ssh
  • Optionally change password (the password prompted is the one from bitnami_credentials for the postgres database user).
  • Create a DB to run the pgbench workload.  In this case I name the db pgbench-sf10 for “Scale Factor 10”.  Scale Factors are how the size of the database is determined.
  • Initialise the DB with data ready to run the benchmark.  The “createdb” step just creates an empty schema.
    • -i means “initialize”
    • -s means “scale factor” e.g. 10
    • pgbench-sf10 is the database schema to use.  We use the one just created pgbench-sf10
  • Noe run a workload against the DB schema called pgbench-sf10

The workload pattern, and load on the system will vary greatly depending on the scale factor.  

Scale-Factor        Working Set Size


1                                   23M
10                                157M
100                             1.7GB
1000                          15GB
2500                          37GB
5000                         74GB
10000                       147GB

 

 

Install a bitnami image to Nutanix AHV cluster.

One of the nice things about using public cloud is the ability to use pre-canned application virtual appliances created by companies like Bitnami.

We can use these same appliance images on Nutanix AHV to easily do a Postgres database benchmark

Step 1. Get the bitnami image

Step 2. Unzip the file and convert the bitnami vmdk images to a single qcow2[1] file.

Put the bitnami.qcow2 image somewhere accessible to a browser, connected to the Prism service, then upload using the “Image Configuration”

Once the image is uploaded, it’s time to create a new VM based on that image

Once booted, you’ll see the bitnami logo and you can configure the bitnami passwords, enable ssh etc. using the console.

Enable/disable ssh in bitnami images
Connecting to Postgres in bitnami images
Note – when you “sudo -c postgres <some-psql-tool> the password it is asking for is the Postgres DB password (stored in ./bitnami-credentials) not any unix user password.

Once connected to the appliance we can use postgres and pgbench to generate simplistic database workload.

[1] Do this on a Linux box somewhere. For some reason the conversion failed using my qemu utilities installed via brew. Importing OVAs direct into AHV should be available in the future.

New (Old) Paper.

A 2007 paper, that still has lots to say on the subject of benchmarking storage and filesystems. Primarily aimed at researchers and developers, but is relevant to anyone about to embark on a benchmarking effort.

  • Use a mix of macro and micro benchmarks
  • Understand what you are testing, cached results are fine – as long as that is what you had intended.

The authors are clear on why benchmarks remain important:

Ideally, users could test performance in their own settings using real work- loads. This transfers the responsibility of benchmarking from author to user. However, this is usually impractical because testing multiple systems is time consuming, especially in that exposing the system to real workloads implies learning how to configure the system properly, possibly migrating data and other settings to the new systems, as well as dealing with their respective bugs.”

We cannot expect end-users  to be experts in benchmarking. It is out duty as experts  to provide the tools (benchmarks) that enable users to make purchasing decisions without requiring years of benchmarking expertise.